> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Educational improvements applying an MPLS
network simulator: a technical approach

M. Dominguez-Dorado, F. J. Rodriguez-Pérez, J. Carmona-Murillo, J. L. Gonzalez-Sanchez

Abstract — Nowadays, multiple services are being
offered over the Internet next generation infrastructure.
Most of these services are causing important social
changes: online collaboration, e-commerce, e-vote,
knowledge sharing, etc. Future technical leaders should
learn about the impact of their activities on the society and
not only about the usual economic point of view. These
principles must be instilled into future engineers by their
educators, who should have a suitable set of teaching tools
which allows them to improve their educational methods.
As MPLS is one of the most important technologies that
support the integration of the aforementioned Internet
services, in this work, we present an MPLS teaching tool
and an evaluation of its influence when educating future
engineers in an academic environment.

Index terms — simulator, MPLS, teaching experience,
engineering education, dynamical interaction, networking
tool.

. INTRODUCTION

PLS (Multiprotocol Label Switching) is a

connection-oriented technology that arises to palliate
the problems that current networks have related to speed,
scalability and traffic engineering [1]. Simultaneously, it
offers end-to-end QoS (Quality of Service) [2] by means of
flows differentiation and resources reservation. Moreover, it
eliminates the problem of managing different control planes
that take place in IP/ATM networks, providing mechanisms to
achieve the convergence of both technologies.

MPLS acts as link between network protocols and the
corresponding link-level protocol. To do it, the MPLS header
is located after the network header and before the link header
[3] in the frame structure. In fact, MPLS packets forwarding is
based on labels and not in the analysis of encapsulated data
from upper levels. It is a multiprotocol technology that
supports any network protocol as well as any technology in

M. Dominguez-Dorado belongs to DISIT at Universidad de Extremadura.
Avenida de la Universidad s/n. CP: 10071. TIf: +34 607 417 860. Fax:
+34 927 257 202. e-mail: mdomdor@unex.es.

F. J. Rodriguez-Pérez belongs to DISIT at Universidad de Extremadura.
Avenida de la Universidad s/n. CP: 10071. TIf: +34 927 257 195. Fax:
+34 927 257 202. e-mail: fjrodri@unex.es.

J. Carmona-Murillo belongs to DISIT at Universidad de Extremadura.
Avenida de la Universidad s/n. CP: 10071. TIf: +34 625 943 308. Fax:
+34 927 257 202. e-mail: jcarmur@unex.es.

J. L. Gonzélez-Sanchez belongs to DISIT at Universidad de Extremadura.
Avenida de la Universidad s/n. CP: 10071. TIf: +34 927 257 195. Fax:
+34 927 257 202. e-mail: jlgs@unex.es.

lower layers (link or physical). In this way, an attractive
mechanism has been provided to take advantage of present
infrastructure in backbone environments, making easy the
migration between technologies; however, the efforts
performed for years to develop innovative mechanisms that
offer support to IP over ATM, have not been lost. Most of the
developed techniques are still valid to have IP over MPLS and
MPLS over ATM.

i open simmpLs

Fig. 1. General view of a scene window where flows with different GoS
levels coexist.

In this work we show up an MPLS network simulator called
OpenSIMMPLS. It is a functional and visual tool (Fig. 1) that
can be used in network and/or communications teaching. It
considers the main operational and setting aspects of an MPLS
domain [4]; at the same time, it has been improved to be
compatible with GoS-supporting (Guarantee of Service)
domains [5]. An MPLS domain with GoS capability could be
understood as an environment able to carry out local
recoveries of discarded MPLS packets, together with the
possibility of re-establishing LSPs (Label Switched Paths) in a
local way [6], [7]. This feature can be offered to some specific
and privileged flows, that needs a fast and reliable service.
GoS also allows these flows to be prioritized with regard to
those not characterized as GosS traffic.

In the following section a comparative between some
common teaching simulators is made. In third section a brief
description of the simulator visual environment is shown, as
well as some other functional aspects. In fourth section we
explain some important technical issues about its
implementation. In fifth point, the applications of
OpenSIMMPLS in academics environments or preliminary
research works are highlighted. In section six, we show recent
results obtained after using the simulator to teach future

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

engineers. Finally, the article concludes summarizing the
contributions of the simulator and the future work.

Il. RELATED WORK

OpenSimMPLS is not the first effort carried out to develop
an educational MPLS simulator. Some researchers have
already made proposals in this way. For example, in [8] we
can find an MPLS simulator that allows designing and setting
MPLS domains and their components. One can run a
simulation and perform statistical analysis of its results,
everything from an educational point of view. Their main
features are: it is a teaching simulator that allows an
elementary statistical analysis of the network traffic; it has a
visual editor to design scenes; it is a multiplatform software
and, although of facto it is free-of-charge and easy to install (it
is an runnable applet located at project’s homepage), neither
its source code is available nor it is a downloadable executable
for a local execution. On the other hand, it doesn't allow
interacting with the simulation at runtime or changing its
language. Also, due to its educational approach, it has not
been designed to work in real MPLS networks using current
manufacturers’ components.

MNS (MPLS Network Simulator) [9] is an NS2 (Network
Simulator 2) extension to allow MPLS networks simulations.
Therefore, their features are similar to those of NS2; that is: it
is a teaching tool, allows a full statistical analysis of all the
events happened during the simulation, it is multiplatform
software, it is distributed under the terms of a free software
license and it is free of charge. Some of its weaknesses are: it
doesn't allow the user to interact at simulation-time to modify
its behavior; that is, the simulation will operate as previously
specified in the configuration file. In teaching tasks, this static
behavior prevents the student to exploit the discovery learning
mechanism. The installation of MNS+NS2 is not easy (it
requires to compile and to install some libraries). The
generation of simulation scenes is difficult due to the necessity
of knowing TCL (Tool Command Language) for the definition
of scenes and all their components. This last, confers to
MNS+NS2 the property of being a complete tool to validate
research results, but in teaching tasks, it originates a learning
curve that makes difficult the design of practical sessions in a
short time. This is a great problem, taking into account the
difficulty of fitting these practical sessions into a teaching
calendar at universities. As the previous simulator, it is not
capable to work in real MPLS networks. Although it is
broadly used in teaching, it is focused on networks research
works.

In the case of OpenSimMPLS [10], in order to make easy
its future use in different academic organizations, it has been
developed as multiplatform software, licensed under the terms
of GPL (General Public License). It incorporates the
advantages of [8] and [9], but it also allows students to
dynamically interact with the simulation; it is translated to
other languages; allows visual designing of scenes and GoS
technology simulation; it doesn't require installation. A
comparison between the features of these three simulators is
presented in Table 1.

In order to do more specific works (not educational), there
are more complete tools; for instance, Totem [11] or OPNET
[12] both directed to work in real environments.

TABLE 1
SIMULATORS COMPARISON
mgg siml’jllz_itsor OpenSimMPLS
Teaching tool . . .
Interactive simulation .
Statistics data . . .
Multiplatform . . .
Multilanguage .
Visual design . .
Free software . .
Free of charge . . .
GoS simulation .
Real environments
applicability

Installation and
execution easiness

I1l. OPENSIMMPLS SIMULATOR

Simplicity is the main feature of the simulator’s graphics
user interface. It has tree differentiated areas: workspace, main
menu and scenes windows. The first one is the main area
where simulation of different MPLS scenes takes place. Main
menu is located in the upper-left corner. It includes options
related to file management (creating, saving and loading
scenes to/from disk), windows layout and help.

Finally, scenes windows allow designing and analyzing
particular MPLS scenes. Their structure is formed by several
tabs, which will be described in following sections.

A. Topology designing area

The first tab is the designing area, in which the parameters
related to the topology and configuration of the MPLS domain
are set. The toolbar is composed of several icons which show
the elements that can be inserted in an MPLS domain (LERS,
LSRs, links...).

The first icon makes reference to the Sender, which is the
node that generates network traffic in the simulator. The
second one is the Receiver, which is the sink of this data flow.
The third one represents an LER (Label Edge Router), used to
assign labels to IP or MPLS packets. It also classifies them,
establishes a path towards the destination host through the
MPLS domain and, finally, allows labeled packets to ingress
in the MPLS domain. The fourth icon is an LERA (Label
Edge Active Router) that operates as an LER, but it also
analyses the IP header to know if packets have GoS
requirements, codifying in this case those requirements in the
MPLS header [5].

A GoS marked IP traffic can only keeps those GoS
parameters inside the MPLS domain if this flow has accessed
through an LERA node. Next icon represents an LSR, which
switches the traffic in the domain. It is a fast component,
because it only checks packets label set by the ingress
LER/LERA. An LSR node has not capabilities to be an MPLS

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

network edge router. The sixth icon makes reference to an
LSRA (Label Switch Active Router) that switches MPLS
traffic inside the domain. It also has the capability to perform
packets retransmissions and LSP fails recoveries both in a
local environment. It also has the capability of temporary
packets storing. In this way, it allows satisfying local
retransmission requests from another LSRA in the domain.
Last icon is the Link which makes possible the connection
between two nodes. All components in a simulation scene
have to be connected using links. Traffic will flow through
those links. Anyway, OpenSimMPLS incorporates errors
control that allows the student to generate free-of-errors
topologies.

B. Scenes simulation area

Once scene’s topology design has been finished, we should
use the Simulation Area. There, one can analyze its behavior
in a visual way: traffic generation, congestions, link failures,
etc. (Fig. 2). The simulation topology will be the
corresponding to the scene specified in the designing area. The
only difference in the structure of both areas (designing and
simulation) is the set of icons showed in the toolbar. Now we
can see icons to manage the simulation operation. Finally, we
can start the simulation by clicking the first icon that shows a
gear.

When a simulation is running, a progress bar indicates the
percentage of the simulation in course. There is also a small
counter at upper-left corner that shows the number of elapsed
simulation nanoseconds. On the other hand, it is also possible
to slow the simulation, what makes feasible to analyze
simulation events in a more detailed way without the necessity
of simulation stopping and restarting. To do it, one must use
the slider in the toolbar.

Fig. 2. Different types of traffic packets being discarded.

Real-time simulation shown in the simulation area consists
of the graphical representation of the internal values generated
by the elements that compose the scene. Most of times, using
both visual representation of the simulation events and
statistical charts of the elements (links and nodes), is enough
to understand the different events happened during the
simulation; however, sometimes we need to have a humerical
point of view to understand some complex situations. To
achieve it, OpenSimMPLS is able to generate a human-
comprehensible trace file in text format, containing all events
that have taken place during the simulation; for instance,
affected components, consequences, etc.

This way, a functional method which makes possible to
check the simulation is provided. In order to generate this
trace file, a click must be done on the checkbox called ‘Create
trace file’.

During the simulation, different scene elements
automatically modify their visual appearance as needed. For
example, LER and LSR nodes will change their color
depending on their congestion level. This is a measurement of
the amount of packets accumulated in the node buffer.
Graphical representation of packets will allow knowing the
kind of on-fly data traffic in the simulation window (classified
according to their priority). It also informs about the quantity
and types of traffics, flows speed, when and how the signaling
takes place, established paths, etc.

Normally, packets are forwarded through the network, but
they also can be discarded in congested nodes. In this case
packets will be shown, graphically, falling down these nodes
(Fig. 2).

During simulation, packets representation belonging to
different types of traffic, as well as data flows forwarding, can
be analyzed with the aid of the legend that is shown
(optionally) at the lower-right corner (Fig. 3). The legend has
demonstrated to be a great help to the students when they use
OpenSimMPLS; they are able to analyze what is happening
during simulations.

¥ Packet received
=+ Packet generated
#* Packet sent
& Packet switched
--- ISP
— — Backup LSF

@ |F packet

o |P (Co%) packet

& MPLS packet

& MPLS (GoS) packet
O TLDF packet

@ CPSREP packet

Fig. 3.Visual help to be used by the pupil during the simulation.

At this moment we have explained several visual signs that
have to be interpreted to understand the events that take place
during a simulation. However, simulation is an interactive
environment and lots of actions can be issued. For instance,
node congestion can be caused by clicking on the node. After
that, the node will suffer great packets saturation (Fig. 4). If it
continues receiving incoming traffic surely will begin to
discard packets in a short time. This function is very useful to
cause packets losses and consequent packets retransmissions
without having to wait the natural node congestion.

— . .-. i

Congestion: 99%. Clic here to stop artificial congestion.

Fig. 4. Artificial congestion of nodes.

In real conditions, a link has failure possibilities. Repairs,
electric discharges, human mistakes, etc, can make a link to
fail and then its traffic will be discarded. However, traffic
overload does not cause a link failure. OpenSimMPLS can
simulate that fact because it supports link failures anytime.
However, it is not an event that happens during the simulation
in a natural way, so it must be caused by hand. We will be
able to simulate a link failure in a simulation with a click on
the desired link. The link will change its appearance showing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

itself as a dashed red line and will cause all on-fly packets to
be lost.

C. Analysis of results area

We can go on to use the Analysis Area (Fig. 5) if we have
set scene’s components to generate statistical data; then we
will see the charts that they are generating (or that they have
already generated, if simulation has finished).

¥ open simmpLs

Srene Yiew Help

& Design | () Simulation | 3 Analysis | & ontians

F . ETTT
Select an element 1o show its statistics _LSRA1 =

I T - ¥ re

Outgoing packets

Number of packets

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000
Time (ns)

[WTLOP WMPLS (Go5 1) W MPLS (Gos3) MPLS

‘ Dicarded packets ‘

Fig. 5. Chart example. Analysis area.

This area is split up in two parts: a toolbar where we can
choose the node or link to be analyzed and a bigger area where
the statistical charts will be shown.

During a simulation, charts will have a dynamic behavior,
changing according to the simulation advances. If it has
already finished, charts show final results. Furthermore, charts
generated by OpenSimMPLS are not static images, but they
operate as interactive objects. One can obtain a pop-up menu
just clicking on a chart using the secondary mouse button.
This way, one will have access to different options, for
instance disk saving of the image, interesting chart
enlargement or printing, etc.

IV. IMPLEMENTATION DETAILS

OpenSimMPLS is a standalone JAR application.
Installation, therefore, does not require any difficult step, and
we just only need to invoke OpenSimMPLS execution through
the SUN’s Java Virtual Machine, that should have been
previously installed.

One of the OpenSimMMPLS advantages is its portability,
since it works independently of computer architectures or
operating systems. That is why Java language has been used.
Java has also allowed the implementation of the simulator as a
multitask application (it is able to simulate more than a scene
simultaneously), what is gotten by means of multithreading
coding.

Moreover, Java is an object-oriented language. The
simulator’s main class, called openSimMPLS, starts the
simulator execution. The main() method, belonging to that
class, creates a TDispensadorDelmagenes object that will load
all necessary images for the application. Then it will be passed
as a parameter to the constructor of every interface elements,
improving the performance. Later, a JSimulador object is

created. It is the main application window. At this moment,
simulation execution gives up being a sequential process.
From that moment, everything is controlled by listening to the
user events generated by the application interface: mouse
orders, menu options, etc.

During the simulation, a clock sends signals to the scene
elements (links and nodes) as temporization events (Fig. 6) or
ticks.

The clock component is configured using two values: first,
the simulation length (total number of ticks) and second, the
ticks duration. The clock, which is executed into its own
thread, will advance from the beginning until it reaches the
maximum number of ticks defined for the overall simulation.
Every tick will be sent to all scene elements, which are
synchronized, so when it reaches the end, the thread will be
stopped and the simulation will finish.

When the different topology components receive a tick,
they also get its duration (number of nanoseconds). Then,
every component activates its own execution thread, so it is
generating concurrent processes. Each thread will carry out a
task, depending on the device type; for instance, switching,
packets forwarding, etc. Each component execution thread
will stop when the time conferred on it by the received tick is

used up.

Timer ticks

Links and
nodes

Simulation
events

Events collector

Simulation panel

"

Fig. 6. General operation of a scene simulation.

When every component has used their tick up, the clock
detects it and generates the next tick to repeat again the
process. The class that implements the clock is denominated
TReloj, and contains an internal list of elements. Every
elements belonging to that list will get temporization events by
the clock.

At runtime, lots of events happen. They must be collected in
order to shown them in a visual form. This acquirement
process is carried out by a scene global collector. All topology
elements, will notify the collector of the task they are
performing during their operation time. Although the tick
generation is a discrete process, through its repetition, we get a
fluid simulation. Therefore, the elements of the topology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

(TNodoEmisor, TNodoReceptor, TNodoLER, TNodoLSR,
TNodoLERA, TNodoLSRA, TEnlacelnterno, TEnlaceExterno),
will encapsulate methods to carry out these notification tasks.

The global events collector is implemented by
TRecolectorSimulacion class. This class has a method called
capturarEventoSimulacion(), that allows the topology
elements to send the simulation events generated during their
threads execution time. However, the collector only gathers
events but it doesn't show them. To show them graphically,
the services of a simulation panel component must be used.
Thus, the ability to isolate generation tasks and events
gathering from its visual representation is achieved.

The simulation panel is implemented in JPanelSimulacion
class that carries out tasks like screen refreshing, visual
simulating, etc. That is, the events that arrive at the collector
are interpreted and shown in the screen, making easy the user
understanding. The method used to send the events to the
screen is called ponerEvento().

A. Scene’s topology

The topology is an object needed to store all the
components in the scene and to manage the links graph
between the nodes and the links. It also establishes the
associations between either the clock and the elements or the
collector and the elements. The overall functionality is
implemented in TTopologia class. To carry out these tasks,
each element has to use a unique identification, which is
assigned by the identifier generator that belongs to the
topology.

B. Simulation scene

The scene is implemented as a TEscenario class that
contains all components of a simulation environment; for
instance: clock, collector, topology, identifiers generator,
links, nodes, etc. This means that the overall components in a
scene are stored in a single object.

The most important method in the scene is called
generarSimulacion(). It starts the simulation after the topology
clock is turned on. In fact, everything needed to operate is
contained in TEscenario object, even the user interface doesn't
exist. This means that one can create an event interpreter
easily, where users with visual limitations could get an
adapted interface. Even it is possible to separate events
generation from their visualization and execute them in
different hosts.

V. TEACHING AND RESEARCHING APPLICATIONS OF
OPENSIMMPLS

The main goal of OpenSiIMMPLS is to be useful to
university professors as a tool for teaching innovation [13]. It
also allows analyzing the operation of MPLS networks via a
multilingual and multiplatform system.

OpenSimMPLS will be shown in Spanish language, if that
one is the operating system configuration, otherwise, the
default simulator language will be English. OpenSimMPLS
uses the Java internationalization system, so it is easy to
translate the tool to another language. It also has an easy-to-

use graphical interface. Each element is coded following the
object oriented paradigm, and the generated processes operate
by means of independent threads, in a concurrent way. The
simulation is composed by three stages: MPLS domain design
and configuration, visual representation of events, and
generation of simulation statistical results.

Students of networking and communications subjects
increase their learning thanks to practical examples. The
simulator permits the students to observe the network behavior
in particular situations; for instance, when the kind of used
traffic is multimedia. It also allows comparing and contrasting
the results thanks to the reconfiguration of domain elements.
In this way, students can improve MPLS scenes, proposing
new features to be added. It is also possible to detect either
pernicious or beneficial effects on the traffic.

A discovery learning based method is performed in
OpenSimMPLS, so students can solve their own problems and
situations; learn technology procedures and understand events
features. They also learn how to control these events and what
to do in particular cases, thanks to the dynamical interactivity
during the simulation.

OpenSimMPLS can be used to help students to reinforce
their knowledge about the technology, for instance, when the
students think in a hypothetical network situation, they can
test it through the simulator results. In this way, the simulator
is a test bed that returns feedback to the students (Fig. 7). This
returned information must be analyzed to know what happens
inside the MPSL domain, and how it is operating.

In summary, there is a double feedback process when the
simulator is used in an academic centre: In one hand, the
simulator execution gives the student the possibility of
analyzing the MPLS scene behavior; in the other hand, after
examining statistical results, several conclusions can be
inferred by the student, who will can change the settings and
restart the simulation. This repetitive process motivates the
students to develop their own mental strategy about MPLS
operation.

Hereafter we show the educational OpenSimMPLS
capabilities, as well as guidelines for using it in a lab practical
session. First of all, the teacher explains the theoretical
concepts about MPLS technology, as well as their possible
problems (nodes congestion, links failures, packets loss, etc.).

Next, the student can immediately start the practical
session. Wasting time on explaining the simulator operation is
not necessary due to the useful user manual that it enclose. In
practical sessions, several activities will be proposed to the
students:

o Well designed and optimum MPLS scenes.

e Scenes where exist common problematic situations.

e Scenes where is necessary the student interaction, causing
links failures or node congestions.

In the first case, scenes will make the students to reinforce
their theoretical concepts. In the second point the students will
analyze situations where, although there is not network
failures, it performance can be improved by way of
reconfiguring topology components or changing the profile of
generated data flows. In the last case, the student will have the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

opportunity to detect and to analyze the consequences of
sporadic network failures. The student will be able to check
how the introduced variations affect to the final system
performance [14].

Theoretical concepts

Knowledge
acquisition :
' Obtaining
conclusions
Student

{ Obtaining . Taking :

i conclusions i decisions

| et Dynamical

Scene designin , !

i i interaction
s Execution i 4
analysis : Settings |

changes |
=

Evaluation Obtaining

! . data

N Operational statistics

Fig. 7. Double-feedback process followed by the pupil when using
OpenSimMPLS simulator.

OpenSimMPLS is an interactive application what means
that the student becomes an active part during the simulation
(modifying properties of the scene in a dynamic manner),
developing this way the experimental knowledge and the
discovery learning [15], [16].

Our tool is a solution to make the operation of an MPLS
domain familiar to students of networking subjects. The
student can research into communications issues and size up
MPLS network resources, avoiding unnecessary risks of
modifying the configuration of real devices in the lab local
network. On the other hand, and as collateral goal, the
statistical results obtained will be useful to the student to
develop new methodologies in its future work as next
generation network planner. It allows acquiring a very
methodical discipline: planning of a MPLS network, obtaining
and analyzing results and successive refinements toward a
final optimal architecture (Fig. 7).

The use of OpenSimMPLS reinforces the theoretical
concepts of MPLS technology and offers the students the
motivation they need to understand the interaction between
different components of a scene.

To sum up, using the simulator as a teaching support to
explain MPLS operation contributes several advantages:

e Itiseasy to install in a lab (it doesn't require database; it
admits multiple architectures and operating systems).

e The use of the simulator as a teaching or a learning
validation tool, will always suppose a cheaper solution
than deploying a real MPLS domain in an academic
laboratory.

e OpenSimMMPLS allows modifying the settings of the
scenes’ components; after that, it let us to analyze the
consequences of these changes and to learn of them. In a
real MPLS network, at an academic lab, won't always be
allowed to carry out configuration changes.

e Simulation allows the student to obtain detailed statistical
data that can be used to examine particular behaviors of
the MPLS domain.

e It is open source software. That means that it allows the
educators to teach not only networking subjects, but also
coding subjects, proposing to their students some changes
to be implemented to the simulator in order to improve it
or add new capabilities.

V1. REAL OPENSIMMPLS EVALUATION IN THE UNIVERSITY

In our case, the simulator is used to gain teaching
innovation in subjects belonging to the Telematics
Engineering Area at Polytechnic School of Céceres, such as
‘Broadband communications’ or ‘Network planning,
specification, designing and evaluation’. It is also used in
subjects focused to train Ph.D. candidates, e.g. ‘Multimedia,
multiprotocol and heterogeneous networks integration with
QoS’ and ‘Broadband, multimedia and multiprotocol
communications with QoS and security’ at the University of
Extremadura. We have carried out a comparative study of the
OpenSimMMPLS use in ‘Broadband communications’. The
study compares the qualifications obtained by the students in
2005/2006 academic year (teaching without the use of
OpenSimMPLS) and 2006/2007 academic year, when we used
the simulator as a supporting tool. In Fig. 8 it can be observed
that for 2005/2006 year the rate of passed exams was 58.82%,
and 41.18% of failed exams. In the following year, coinciding
with the incorporation of OpenSimMPLS, the percentage of
passed exams grows to 66.67%, diminishing the rate of failed
exams, therefore, to 33.33%.

100%

80%

50%

40% -+~

20%—-----

0%

T T
2005/2006 200612007

M % failed exams [% passed exams

Fig. 8. Comparative between puplils who have passed the exam and those
who have failed it. Years 2005/2006 and 2006/2007.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

In Fig. 9 are also observed that the groups’ average mark in
2005/2006 year was 4.67 on 10 and, in 2006/2007 year, that
value ascended to 6.17 on 10. At the same time, standard
deviation diminishes from 3.19 points in 2005/2006 to 2.71
points in 2006/2007, showing therefore a better
homogenization of students’ qualifications.

T T
2005/2006 2008/2007

M Average mark
[[] Standard deviation of average mark

Fig. 9. Average grade variation and marks standard deviation for years

2005/2006 and 2006/2007.

Summarizing, in Fig. 10 the improvement obtained in
2006/2007 year when using OpenSimMPLS is quantified: on
one hand, the increment of the average mark has been 32.07%
and on the other hand, the decrease of standard deviation is
24.28%.

30%-----

20% -+~

0% - - -

0%

R SETTEPSCIRCTEIPRIPRS O

2091

30k

B Average Mark variation (%)
[[] Standard Deviation variation (%)

Fig. 10. Increment of Average grade variation and decrement of marks
standard deviation between years 2005/2006 and 2006/2007.

VII. CONCLUSIONS AND FUTURE WORK

The use of OpenSimMPLS to carry out professional works
in real network environments is not recommended due to its
teaching purpose (it doesn't incorporate real features of current
manufacturers' components). However, the present work
proposes the use of OpenSImMMPLS as an educational tool to
be innovative when teaching subjects belonging to Telematics
Engineering Area, which is justified by the growing interest
that the MPLS technology is waking up.

Also, the simulator is a supporting tool to those research
projects related to MPLS (as a particular case, we have
implemented the GoS support on it), as well as in teaching
subjects related to this technology. Particularly we have
proved the improvement of the results concerning to
‘Broadband communications’ group. We observed an increase
in the students’ motivation and interest, with an improvement
of the average mark and also obtaining more homogeneous
qualifications, as shown by the decrease of the standard
deviation.

Its multiplatform philosophy and its free software license
make easy its own evolution, since it can incorporate the
received feedback from other users by means of the project’s
homepage or via the simulator ‘Contact the authors’ option.

Among its future possibilities, we are thinking about
carrying out coding practices so that the students of subjects
related to Telematics Engineering Area can develop modules,
algorithms and additional network technologies on the
simulator. On the other hand, OpenSimMPLS will be
improved by adding IPv6 (Internet Protocol version 6) and
RSVP (Resource Reservation Protocol) support and with the
addition of new visual features intended to allow obtaining a
more detailed and richer information.

ACKNOWLEDGEMENTS

This research work is sponsored in part by the regional
Education, Science and Technology ministry belonging to the
Extremadura Regional Government, by means of AGILA
project numbered as 2PRO3A090.

REFERENCES

[1] M. Kodialam. T. V. Lakshman. Restorable Dynamic QoS Routing. IEEE
Communications Magazine, Vol 40, Issue 6, June 2002, pp 72-81.

[2] J. Gozdecki, A. Jajszczyk, R. Stankiewicz. Quality of Service
Terminology in IP Networks. IEEE Communications Magazine, Vol 41,
Issue 3, Mar 2003, pp 153-159.

[3] E. Rosen et al. Multiprotocol Label Switching Architecture. RFC 3031,
January 2001.

[4] M. Dominguez-Dorado, F. J. Rodriguez-Pérez, J. L. Gonzélez-Sénchez,
A. Gazo. Multiplatform and Opensource GoS/MPLS Simulator. 1l
European Modelling and Simulation Symposium (EMSS2006).
International Mediterranean Modelling Multiconference (13M2006).
Barcelona, 2006, pp 529-537.

[5] F.J. Rodriguez Pérez, J. L. Gonzélez Sanchez, A. Gazo Cervero. RSVP-
TE extensions to provide guarantee of service to MPLS. IFIP
Networking 2007. Atlanta (USA) May 2007.

[6] J. L. Marzo, E. Calle, C. Scoglio, T. Anjali. QoS Online Routing and
MPLS Multilevel Protection: A Survey. IEEE Communications
Magazine, vol 41, Issue 10, Oct 2003, pp 126-132.

[71 G. Ahn, W. Chun. Simulator for MPLS Path Restoration and
Performance Evaluation. Chungnam National University, Korea, 2001,
pp 32-36.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

(8]
[°]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

MPLS Simulator: http://www-entel.upc.es/xavierh/mpls (07/05/2007).
G. Ahn, W. Chun Design and Implementation of MPLS Network
Simulator. 15th International Conference on Information Networking,
2001, pp 694.

OpenSimMPLS: http://gitaca.unex.es/opensimmpls (07/05/2007).
http://totem.info.ucl.ac.be/index.html (07/05/2007).
http://www.opnet.com (07/05/2007).

S. H. Thomke. Simulation, learning and R&D performance: Evidence
from automotive development. Research Policy, Volume 27, Issue 1,
May 1998, pp. 55-74.

T. J. Overbye, P. W. Sauer, C. M. Marzinzik, G. Gross. A user-friendly
simulation program for teaching power system operations. IEEE
Transactions on Power Systems, Vol 10, Issue 4, Nov 1995, pp 1725-
1733.

T. de Jong, W. R. van Joolingen. Scientific Discovery Learning with
Computer Simulations of Conceptual Domains. Review of Educational
Research, Vol. 68, Issue 2 (summer, 1998), pp. 179-201.

A. Parush, H. Hamm, A. Shtub. Learning histories in simulation-based
teaching: the effects on self-learning and transfer. Computers and
Education, Vol. 39, Issue 4, Dec 2002, pp. 319-332.

Manuel Dominguez-Dorado, Zafra (Badajoz). Spain,
1977. He got his BS and MS degree in Computer Science at
University of Extremadura, 2004. Now, he is a Ph.D.
candidate and FPI grant holder at Telematics Engineering
Area, Computing Systems and Telematics Engineering
Department (UEX). His areas of interest are MPLS-TE,
QoS routing and inter-domain routing.

Fco. Javier Rodriguez-Pérez, Huelva. Spain, 1976. He got
his MS degree in Computer Science at University of
Extremadura, 2000. Now, he is professor at Telematics
Engineering Area, Computing Systems and Telematics
Engineering Department (UEXx). His areas of interest are
QoS routing and Guarantee of Service over MPLS-TE.

| Javier Carmona-Murillo. Badajoz. Spain, 1982. He got

his BS and MS degree in Computer Science at University
of Extremadura, 2005. Now, he is a Ph.D. candidate and a
researcher at Telematics Engineering Area, Computing
Systems and Telematics Engineering Department (UEX).
His areas of interest are QoS and IPv6 mobility support.

José Luis Gonzélez Sanchez, He got his Ph.D. in
Computer Science at Technical University of Catalonia. He
is Lecturer Professor and Telematics Engineering Area
coordinator at Computing Systems and Telematics
Engineering Department (UEXx). He is the main researcher
of GITACA research group. His areas of interest are QoS,
MPLS-TE and security in communications.

8

