MULTIPLATFORM AND OPENSOURCE
GoS/MPLS SIMULATOR

Manuel Dominguez-Dorado, Francisco J. Rodriguez-Pérez, José L. Gonzalez-Sanchez, Alfonso Gazo-Cervero
Computer Science Department, University of Extremadura
Avda. de la Universidad s/n, CP: 10071 Céaceres, SPAIN
E-mail: {mdomdor, fjrodri, jlgs, agazo}@unex.es

KEYWORDS

MPLS, path recovery, MPLS simulator, network
prototype, performance evaluation.

ABSTRACT

MPLS (Multiprotocol Label Switching) technology
provides interesting elements to integrate network
technologies like ATM (Asynchronous Transfer Mode)
and IP (Internet Protocol) with QoS (Quality of Service)
and traffic engineering. It is an advanced proposal
which presents great interest for researchers into
networks and communications. In this paper we present
a simulator called OpenSimMPLS; it is a tool for
planning, designing and evaluating MPLS networks. It
allows the same operations to be performed over GoS
(Guarantee of Service)/ MPLS networks, an
improvement that incorporate into MPLS the capability
of recovering discarded packets and re-establishing
broken LSP’s (Label Switched Path), both locally. The
simulator makes possible that researchers can configure,
interact and analyze the operation of a MPLS domain in
an easy and efficient way. On the other hand, due to its
freeware and open source license, it might be used by
researchers as protocol engineering platform, to carry
out analysis, and as a tool to validate results. Its source
code is opened so everybody can extend the simulator
by adding support for new protocols or techniques.

INTRODUCTION AND RELATED WORK

MPLS (Rosen et al, 2001) is a technology that arises to
palliate the problems that raise the present networks as
far as speed, scalability and traffic engineering. At the
same time, it offers end to end QoS (Gonzélez-
Valenzuela and Leung, 2002; Kodialam and Lakshman,
2003) by using flows differentiation and resource
reservation. In addition, it eliminates the problem of
manage several control planes that take place in
IP/ATM networks, providing mechanisms to easily
obtain the convergence between both technologies.

MPLS acts as nexus between link and network layers.
To do it, in the structure of a frame the MPLS header is
located after the network header and before the link
header. Currently, the MPLS packets forwarding is
based on this header, called MPLS label, and not in the

analysis of the data that it encapsulates (Rosen et al,
2001b).

It is a multiprotocol technology that can simultaneously
carry any network protocol and support any technology
in lower layers (link or physic). Therefore, MPLS
involves an attractive mechanism to take advantage of
the current backbone infrastructure, facilitating
therefore the migration of technologies. In addition, the
efforts made during years in the development of
innovative proposals for IP over ATM could be re-used,
since most of the researched techniques are valid to
accommodate IP over MPLS and MPLS over ATM.

Due to the increase and the relevance of this technology,
tools that facilitate its adoption are needed; for example
simulators (Ahn and Chung, 2001b), control and
management tools, security tools, and so on. In this
work an MPLS network simulator, called
OpenSimMPLS, is presented. It is a functional and
visual tool that considers the fundamental configuration
and operation aspects of a MPLS domain (Cavendish,
Ohta and Rakotoranto, 2004). In the same way, the
simulator has been extended to support MPLS domains
with GoS (Dominguez-Dorado, Rodriguez-Pérez,
Gonzalez-Sanchez, Marzo and Gazo, 2005). Among
others features, It support path protection (Huang and
Sharma, 2002) and lost packets recovery.

In the following section, the interface of the simulator as
well as the most important functional aspects that make
it interesting, are described. In the third section, general
details concerning with its implementation and its
extension possibilities are commented. The article
concludes emphasizing two aspects: on the one hand,
the contributions of OpenSimMPLS as a platform to
validate research results, and on the other hand
describing new features that are being built in the
simulator and those that are being planned to
incorporate soon.

OPENSIMMPLS OVERVIEW

OpenSimMPLS has been planned as a tool to allow
MPLS and GoS/MPLS networks simulation (Ahn and
Chung, 2001). This characteristic allows using the
simulator in two different ways: on the one hand, it
allows testing and evaluating MPLS networks with its
basic characteristics, for example the label signalling or

the LSP establishment; and on the other hand it allows
to experiment with advanced concepts like, traffic load
balancing, local packets recovery or LSP re-
establishment (Marzo, Calle, Scoglio and Anjali, 2003).
The operation of the simulator is governed by three
stages, which are implemented as well in three
separated zones in the application: GoS/MPLS domain
design and configuration, interactive simulation and
analysis of results. Also it is needed to consider a pre-
stage in which the length of the simulation, the
frequency of sampling, and so on, will be set up.

Simulator Zones

In order to make the use of the simulator easy, three
zones have been designed (Figure 1): first, the menu
bar, in the upper margin of the application window,
which contains the required options to manage the open
or file-stored scenes and to arrange child windows that
are opened. Second, the working zone, which is the rest
of the main window, where every MPLS scenes
simultaneously opened, will be located. Third and last,
scene windows which contain all they need to
completely designing, simulating, configuring and
analyzing GoS/MPLS domains. It is possible to work
simultaneously with more than a scene, which allows
visualizing and contrasting its parallel evolutions.

CpensImmpLs

[Desion| O Smutarion | 3 anawsis
LR AT ==

Figure 1. General View of Simulator Zones

Once a new scene is created, a scene window appears in
the simulator working zone. From that moment, every
heavy configuration work, design, evaluation or
simulation of the new scene is made from that window.
Scene windows contain four tabs (Figure 2) that
correspond to the design, simulation, analysis and
timing options, previously explained.

Wil ae=1

| @F Design | @ Simulation | 4 rnalysis | ﬂ options

e S e —

Figure 2. Tabs of the Scene Window

GoS/MPLS Domain Design

‘Design’ tab allows inserting GoS/MPLS domain
elements so that, element by element, the domain on
which it is desired to make the simulation and analysis
could be created. To it, this tab has a set of icons that
represents each one of the elements to insert in the
topology in creation (Figure 3).

S —— I b g T TUETOlTTrT I

e e E e —

Figure 3. Icons of GoS/MPLS Elements

From left to right, these icons represent a source node, a
sink node, a LER (Label Edge Router) node, a LER
node with GoS support, a LSR (Label Switch Router)
node, a LSR node with GoS support and a link, used to
physically join two nodes.

For all the available elements, the work method is the
same one: first of all the element must be added to the
scene or domain to be simulated; at this moment it is
necessary to enter some minimum data, e.g. the name of
the element, so that the simulator can operate; After the
element insertion, if it is not desired to use the default
configuration, the element’s detailed options should be
configured.

In order to insert each one of the elements in the scene,
a click must be performed over its icon. The simulator
verifies that the current scene allows adding the selected
element; if not, OpenSimMPLS will show the
corresponding warning, whereas if there is no problem,
it will show the element’s general configuration window
(Figure 4).

'LER configuration ol

] General | Fast | Advanced |

ﬁ A LER labels and routes flows.

Select the position-

LER name

—

X show narne

W= 120 X= 250

& wok 3 $cancel)

Figure 4. Example of Initial Element Configuration

After accepting, the element will be inserted in the
scene, which can be shown in the white canvas of the
scene window. Elements already inserted support the

drag and drop paradigm if the mouse left button is used.
That allows easily modifying the element position. In
the same way, a contextual menu of each inserted
element (which contains options such as the advanced
properties) can be obtained by clicking on the element;
to it, the mouse right button must be used. For example,
one of the properties that can be activated for each
element is the desire of generating statistical data or not;
this means that during the analysis phase the possibility
of examining the statistical data of only elements
configured for it, exists, making easy the analysis and
saving memory.

Besides, a menu with options can be obtained anywhere
on the scene by clicking with the mouse right button on
a blank area of the domain representation that does not
contain elements.

Following this procedure, a GoS/MPLS domain can be
completely built in a simple way, free of errors (Figure
5). At this moment it is possible to finish the scene
design and configuration and follow setting up the
simulation timing parameters.

Figure 5. Complete GoS/MPLS Domain Design

Timing Parameters Configuration

In the ‘Options’ tab of the scene window, general
characteristics can be configured on the simulation
scene that is being developed: information about the
scene like author’s name, description and, what is most
important, the length (in nanoseconds) and the sampling
interval of the simulation (Figure 6).

Time aaamezers

Duration om 200000 1.

Stea 10015

Figure 6. Timing Parameters Configuration

The maximum value for the sampling interval is
automatically established depending on the configured
link delays of the domain and the length of the
simulation. Making this interval longer, the granularity
in the capture of happened events during the simulation

is increased, which causes that the visual simulation is
coarser and the charts generated in the analysis process
contain less intervals; but at the same time less memory
resources are needed, reason why this configuration is
recommendable when running OpenSimMPLS in low
performance hosts. For an optimal simulation this
parameter should be tuned to a low value.

After tuning the timings parameters of the simulation,
the scene is ready so that the simulation can start.

Interactive Simulation

The ‘Simulation’ tab contains everything to observe and
manipulate the simulation of the scene. To it, it has two
zones: the options zone and the simulation zone. The
options zone (Figure 7) has a set of icons and
components that allows, from left to right, the following
operations: starting the simulation, finalizing the
simulation, resuming the simulation, pausing the
simulation, seeing the running progress of the
simulation, slowing down the simulation and creating an
analyzable trace file, that stores what is happening in the
course of the simulation.

| e msitic (] Create trace file

9000 b

Figure 7. Simulation Options

The simulation zone is the white box that can be found
at the centre of the scene window. The same topology
that has been designed for the GoS/MPLS domain in the
design stage will be shown on it. In order to execute the
simulation one must click on the first icon of the option
zone. Automatically the simulation will start. During the
simulation many details are possible to be observed
(Figure 8), e. g. on-fly traffic, the node congestion
(indicated by different colours), the packets discards,
and so on.

The simulator has been planned to be intuitive, reason
why some details have been taken care specially. For
example, the established LSP are painted with dashed
lines, different kinds of traffic show different aspects,
greater thickness are used to draw links having lower
delay, another kind of dashed lines are used to the
backup LSP, etc.

Figure 8. Simulation Details

If desired, the simulation runs on a continuous and fluid
form without user intervention. However, the simulation
can be interactive. On the one hand, it is possible to
cause that nodes acquire a congestion level near 100%
to evaluate the answer of the design that has been
created to this kind of problems. Also, it is possible to
cause a link to fail in order to observe how the LSP are
re-established or how the backup LSP are activated.
Both operations are made by means of a mouse click on
the node or the wished link, respectively. In order to
undo the caused effect, it is solely necessary to repeat
the operation.

At any time, the user can cause an informative legend to
appear, by clicking on some blank area of the simulation
zone of the designed domain where there are not
elements (Figure 9).

"'!' Facket received
“#: Packet generated

@ |F packet

o |P (Co5) packet
B MPLS packet # Packet sent

B MPLS (Gos) packet 47 Packet switched
= TLDP packet - - - L5F

@ CPSRP packet — — Backup LSFP

Figure 9. Legend

Finally, ‘Create trace file’, from the options bar, allows
enabling or disabling the dump to disk of the simulation
data. If it is activated, at the same time that the scene is
being simulated, all the events taking place, which
elements of the design and in what moment, are stored
in a file, to be able to make a more detailed study of the
simulation after finishing.

Analysis of Results

The last step consists of contrasting analytically that the
results that have been observed in the visual simulation
correspond to the statistical data gathered by the
simulator. The ‘Analysis’ tab offers some statistical
charts for each element. Charts will be available only
for those elements configured for it, as commented in
previous sections. Near the upper margin of this tab is
the node selector. This selector allows choosing the
node whose charts are required (Figure 10).

Select an element to show its statistics { Sink— w)

itk
L5EA L

Figure 10. Node Selector

Some of the data shown in the charts are, depending on
the kind of selected node: number of generated,

discarded and received packets, retransmission requests,
effective packet retransmission, and so on.

Once selected the wished node, charts associated to it
are shown in the lower area of the tab (Figure 11). It is
necessary to emphasize that charts are interactive and
allow the user to zoom them, export them as a PNG
(Portable Network Graphics) image or print them,
among other options.

Incoming packets

125 ,,”/’)
100 _,«’_rr:._:’#—.;
ST i

75 Jrl,»:;_j::,_,f’
s0 PR =
e /_,_,-’

Mumber of packets

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Time (ns)

WIF(GoS 1) MIP Gos 3l mIP

GoS packets local recovery

Description

W Packets (GoS) losts M Sent requests Wi Recovered GoS packets Unrecovered GoS packets
Request still without respanse

Figure 11: Example of Statistic Charts

Charts provided by OpenSimMPLS are generated by
JFreeChart (Goh, 2006); opensource Java ™ software
that has been included in the simulator and that allows
generating advanced and robust charts. The JFreeChart
API (Application Programming Interface) collects the
needed data for charts generation from the events
created by the simulator during the simulation of a
scene. The generated charts are highly configurable,
reason why it is relatively simple to adapt the form in
which the data are shown. It is only needed to modify a
few source code lines.

Information shown in the charts generated by the
simulator is concrete and allows the analysis of the
GoS/MPLS domain behaviour, e.g. a node shows the
packets that arrive to it and the packets that it relays to
another node during the simulation, in a graph of type
XY. Each kind of traffic is represented as different
series. Another data type, like total number of discarded
GoS packets, is represented in a bar chart. If this
information is joined to the provided one by the trace
file and the visual simulation, a deep level of knowledge
of what can have happened, how, when and why, should
be obtained.

IMPLEMENTATION DETAILS
OpenSimMPLS has been implemented following the

MVC model (Model View Controller) with Java ™,
Whenever it is possible, the user interface is separated

of the application logic. In addition, its implementation
is very modular so its maintenance and its
improvements are easy. The simulator architecture, at
very abstract level, follows a three modules scheme
(Figure 12).

User OpenSimMPLS
Interface [¢—» Engine
A 4

Interpreter of Simulation Events

Figure 12. Simulator Abstract Architecture

To achieve this architecture, a wide class hierarchy has
been created. An easy-to-use graphic environment has
been created to allow the configuration of every
parameter the simulator engine needs and the inspection
of values they have in each moment. Once configured,
the engine takes charge of generating the simulation.
Really, with only a few changes, a complete simulation
could be realised without need of graphics interface
because all the application logic is implemented in this
module. Finishing, in order to make the simulation
process more friendly, a module that interprets every
values generated by OpenSimMPLS engine, has been
added. It shows these values on the screen in a visual
and attractive form. At a lower abstraction level (Figure
13), the three modules are composed by some
intercommunicated classes.

User Interface OpenSimMPLS

Engine

JSimulador - TEscenario

4

|->JVentanaHija » TTopologia

lp» TNodoTopologia

TNodoEmisor
TNodoReceptor
TNodoLER
TNodoLERA
TNodoLSR
TNodoLSRA

> TEnlaceTopologia

> TReloj

> TSimulacion

L»TRecoIectorSimuIacion

Interpreter of Simulator Events

JPanelSimulacion «-----—-—-———---_ 1

Figure 13. Simulator at Medium Level Architecture

These classes are joined to others, that are needed, but
of less relevance so, due to space problems, they will
not be detailed in this work.

User Interface

This module encloses everything that is related to the
simulator graphic environment: windows, mouse and
keyboard events, help, and so on. Its main class is
JSimulador, which starts the application and creates a
new simulator that will allow doing tasks related to the
simulation. A JSimulador instance shows an empty
main window and allows working with scenes, stored in
disk or created at the moment. When a scene is created
or opened from disk, it is loaded into a new child
window of type JVentanaHija. This class,
JVentanaHija, allows creating, modifying, configuring
and executing scene simulations and will be just a
communicator between the class containing the scene
and the OpenSimMPLS user. Information managed by
JVentanaHija instances is bidirectional since on the one
hand the user must give instructions to the simulator but
at the same time the graphic user interface must inform
the user about everything happening, in a feedback
process.

OpenSimMPLS Engine

Each JVentanaHija instance has a reference to an object
of type TEscenario as attribute, containing the needed
logic for the simulation. At every moment, information
contained in 7Escenario will be shown to the user in the
window who will be able to modify its values by using
the widgets provided. At a time, TEscenario contains
attributes from different kinds. The most important
among them is the one which stores the topology of the
scene whished to be simulated. This information is
contained in a TTopologia object. Apart from the
topology, the scene includes needed information about
the simulation configuration such as its length, sample
interval, etc. This data is stored in an attribute of type
TSimulacion. With these two objects we have the basis
to start simulating because we know the GoS/MPLS
network configuration and the timing parameters to be
applied to the network in order to generate the
simulation results.

TSimulacion

In addition to the simulation -configuration, the
TSimulacion object has a reference to an object of type
TREcolectorSimulacion. This object will receive the
data generated by the scene elements (nodes and links)
throughout the simulation. It acts as OpenSimMPLS
engine exit point and functions as nexus with the
simulation events interpreter.

TTopologia

Instances of this class contain the whole network
specification. They have a graph structure that allows a
formal specification of the network connections to be
simulated. This structure consists of a binary tree that
stores elements of type TNodoTopologia (network
nodes) and another binary tree that stores elements of
type TEnlaceTopologia (links between nodes). Each of
the elements, nodes and links, has its own features that
will be explained afterwards. TTopologia counts on
another attribute of type TReloj which is essential for
the simulator to work properly. When simulation starts,
TReloj sends periodically signals to every network
nodes and links, giving them a span of time (defined in
TSimulacion) in which they must make their necessary
tasks. During this span, they must notify everything they
do, to the topology TRecolectorSimulacion object. On
finishing each span of time, all the elements are halted
until the timer gives them other period of time to be able
to continue. In this way, after successive spans,
OpenSimMPLS records partial shots of the state of all
the network elements that, once presented as an events
sequence, allows observing the behaviour of the
simulated network.

TElementoTopologia
This is an abstract class. All the elements likely to be

inserted in a network with OpenSimMPLS are inherited
from it (Figure 14).

TElementoTopologia

[TEnIaceTopoIogia] [TNodoTopologia]

TEnlaceExterno]-b[TNodoEmisor]
TEnlacelnterno]*[TNodoLER]
» TNodoLERA |

> TNodoLSR |

» TNodoLSRA |

)

"[TNodoReceptor

Figure 14. Elements Hierarchy

TEnlaceTopologia represents a link from the simulated
network. Among its attributes we find the link delay and
two references to the nodes it joins. There are two link
varieties depending on if it joins two internal
GoS/MPLS domain nodes or if one of these nodes is an
external one. This differentiation is made exclusively
with a visual representation purpose. When a link
receive a span of time from the simulator timer, it starts
to run the task that is configured for, which consists on
propagating the traffic which is crossing it, slowly or
fast depending on the link delay, from the source node
to the sink one.

TNodoTopologia is the super class for all kinds of nodes
that can be placed in an OpenSimMPLS scene. There
are six varieties of this type:

TNodoemisor, is a class that implements all the traffic
generator node functions. It is designed to generate
fixed size packets or variable size packets. In the latter
case, traffic is generated by using the real average
distribution announced in the Internet2 Netflow Weekly
Report (Table 1).

Table 1. Distribution of packets sizes

Traffic % Size range (octets)
47% 0—100
24% 101 — 1400
28% 1401 — 1500
1% 1501 — 65535

TNodoLER, is a class that implements all the LER node
functions, in charge of pushing or popping MPLS labels
to the incoming or the outgoing traffic in a MPLS
domain. This type of nodes incorporates the capability
of carrying out end to end LSP establishment.

TNodoLERA, is a class that implements all the LERA
(LER-Active) node. This type of node has the same
capabilities that a LER node but, besides, it supports
working with information flows that require GoS. In
this class, multitude of features not present in basic LER
nodes, are implemented, such as traffic prioritizing with
PRR (Prioritized Round Robin), packets recovery with
EPCD + GPSRP (Early Packet Catch and Discard +
GoS PDU Store and Retransmit Protocol), fast rerouting
in case of a main LSP failure with RLPRP (Resilient
Local Path Recovery Protocol), load balancing with
RABAN (Routing Algorithm for Balanced Active
Networks), and so on.

TNodoLSR, instances of this class allows simulating a
LSR node that switch the traffic fast along the MPLS
domain.

TNodoLSRA, instances of this class implements all the
basic LSR node features. It represents a LSRA (LSR-
Active) node; moreover, objects of this type have the
same advanced features that LERA nodes, that is to say,
PRR, EPCC GPSRP, RLPRP and RABAN features are
implemented on them.

TNodoReceptor. This class implements a sink node. Te
structure of this node is simple since it is solely thought
for the traffic to be directed to it. Its main features are
that it is never congested and it requires only little effort
to configure it.

Any element of the topology, nodes or links, follows the
operation method showed below (Figure 15).

[START]
Y
step > 0 NOT
YES
Generate
[Do work }-- simulation
events
A 4
Decrements
step
[END]4

Figure 15. Flowchart of Elements Operation

The simulator is thread programming. This enables each
topology element to work independently and
concurrently during the simulation taking advantage of
the processor capacity and the resources of the host
where the application is running.

Interpreter of Simulation Events

The last component of OpenSimMPLS is the simulation
events interpreter. Nowadays the simulator relies on a
unique interpreter whose mission is to show graphical
and visually the simulation result. Every TEscenario
element has a reference to an object of type
JPanelSimulacion. The latter is the graphic element
which receives simulations events from the events
collector (of type TRecolectorSimulacion) coming from
the elements themselves during their operation.
JPanelSimulacion allows showing different types of
events: on-fly packets, discarded packets, broken links,
established LSP, congested nodes, packets switching,
LSP signalling, backup LSP establishment, etc.

OpenSimMPLS has been designed so that in the future
new simulation events interpreters can be developed in
order to show the simulation in a very different ways
with minimum changes in the application, e.g. inclusion
of a sound in each event for people with visual
difficulty, separation of the simulation generation from
its visual display over the network, and so on.

Features Summary

The OpenSimMPLS characteristics are plentiful and can
help the researchers and network designers who wish to
make network prototypes; in order to make easy their
work, all the technologies and protocols supported by
the simulator are briefly described next:

TCP (Transmission Control Protocol) as IPv4
packets payload. Although the simulator works at
layers 3, 2+ and 2 of OSI (Open Systems
Interconnection) model, the existence of TCP
traffic is simulated so that overhead introduced by
this type of traffic, is reflected in the statistics.
Marking the traffic at layer 4 is allowed in order to
support the proposals of GoS over MPLS.

IPv4 over MPLS. The Simulator allows the IPv4
traffic to be labelled with a MPLS header.

IPv4 flows. Source nodes can generate IPv4 traffic
with real properties of real IPv4 traffic.

MPLS flows. Source nodes can generate MPLS
traffic with real properties of real MPLS traffic.
GoS marked IPv4 flows. This feature allows that
the simulator supports the traffic prioritizing and
the proposals to support GoS over MPLS. Traffic is
allowed to be marked at layer 3.

GoS marked MPLS flows. Permite que el
simulador soporte la priorizacion de trafico y las
propuestas para soportar GoS sobre MPLS. Se
permite marcar el trafico a nivel 2+.

Constant traffic. The traffic sources can generate
packets with a constant cadence and a predefined
fixed size.

Variable traffic, with a packet size distribution from
real Internet. Following the distribution average of
the weekly traffic statistics of the Abilene network
(Internet2), the simulator allows to generate similar
variable traffic to the real traffic of Internet.
Downstream on demand label distribution. The
simulator allows the request of labels for the LSP
establishment, but not the advertisement of
predefined labels.

TLDP (Tiny Label Distribution Protocol) support.
The IETF (Internet Engineering Task Force) has
recommended leaving the research on LDP (Label
Distribution Protocol) so that, while the simulator is
equipped of RSVP (Resource Reservation Protocol)
label distribution, it incorporates a reduced LDP
subgroup, at functional level, to be able to requests
and allocates MPLS labels. This protocol has been
called TLDP.

GPSRP support. This protocol comprises of the
proposal of supporting GoS over MPLS. It allows
making local retransmissions of privileged packets
when they are discarded in buffers nodes. In the
simulator, this feature is only available for active
nodes.

RLPRP support. This protocol comprises of the
proposal of supporting GoS over MPLS. It allows
to the establishment of a backup LSP and its
activation when the main LSP fails. In the
simulator, this feature is only available for active
nodes.

RABAN support. This algorithm comprises of the
proposal of supporting GoS over MPLS. It is a
routing algorithm that allows the load balancing in
network congested networks. In the simulator, this
feature is only available for active nodes.

e DMGP (Dynamic Memory for GoS PDU)
implementation. This component belongs to the
proposal of supporting GoS over MPLS. DMGP is
a node internal memory that allows the temporary
storage of the privileged packages that are switched
by the node. This makes possible their later
retransmission if necessary. In the simulator, this
feature is only available for active nodes.

e Floyd algorithm support. Traditional routing
algorithm.

e Prioritized Round Robin buffers management
method. This method belongs to the proposal of
supporting GoS over MPLS. It is a queue policy
that allows prioritizing the traffic according to its
type and its GoS requirements. In the simulator,
this feature is only available for active nodes.

e EPCD support. This technique comprises of the
proposal of supporting GoS over MPLS. It allows
the early detection of packet discards. This makes
possible to detect that a privileged packet has been
discarded and then, request its retransmission. In
the simulator, this feature is only available for
active nodes.

In addition, in order to be more useful as prototyping
tool, the simulator considers visual and analytically the
following situations:

Local packets recovery.

Local LSP’s recovery.

Complete scene simulation.

LER, active LER, LSR, active LSR, source and
sink simulation.

Broken links simulation.

Congestion cases simulation.

Complete nodes statistics.

LSP’s and backup LSP’s establishment simulation.
Discarded packets simulation.

Statistics charts printing.

Statistic chart export to PGN images.

Links delay simulation.

Differentiated simulation for each type of traffic.

Finally, in order to assure that the OpenSimMPLS
simulator acceptably fulfilled quality requirements, the
bug detection software Findbugs, from the University of
Maryland (Hovemeyer and Pugh, 2004), have been used
during the simulator development process.

CONCLUSIONS AND FUTURE WORK

The present work proposes the wuse of the
OpenSimMPLS (http://gitaca.unex.es/opensimmpls)
simulator to the analysis, planning and assessment of
GoS/MPLS networks in different areas such as research,
teaching or commercial networks solutions deployment.
This use is justified on the great interest the MPLS
technology has arisen and on the difficulty of
deployment real prototypes, either by it expensive

economic cost or by the impossibility of adding new
features to the nodes switch fabric existent in the
present industry.

It has been confirmed in the practice that the simulator
has a positive response over different platforms and
allows obtaining satisfactory results, adjusted to the real
MPLS networks operation, both in a visual form and in
analytical one.

To sum up, it has been verified that the use of the
simulator offers the following advantages:

e Simplicity of implantation and use. The simulator
does not require data base and admits multiple
architectures and operating systems. It has been
probed over Intel and SPARC architectures, with
Linux, Windows and Mac OS X operating systems.

e With OpenSimMPLS the different components of a
MPLS domain can be reconfigured so that, the
consequences of these changes can be analyzed. On
a real MPLS network these modifications will not
always be allowed.

e The simulation allows obtaining detailed trace files
and statistics with which concrete behaviours of a
MPLS domain can be analyzed.

e The use of the simulator will always suppose a
more economic validation and prototyping solution
than a real MPLS domain deployment.

e Its opensource license allows adding improvements
in the application or adding new features, before
starting to design new real switch fabric.

e The use of the simulator allows to make
demonstrations to clients before deploying a real
network solution to them, so that they can observe
(and analytically verify) the advantages that they
will obtain.

Currently, the simulator is being extended with the
incorporation of new features among which the most
important are the signalling and the resource reservation
using RSVP-TE (Resource Reservation Protocol —
Traffic Engineering) and CSPF (Constrained Shortest
Path First). And, in a near future, we are working so that
OpenSimMPLS allows simulating GoS/MPLS networks
with IPv6 (Internet Protocol version 6) traffic and
supporting more than a single MPLS domain. This will
make possible the creation of interdomain environment
prototypes supporting QoS and/or GoS to build e.g.
MPLS virtual private networks (VPN-MPLS).

REFERENCES

Ahn G.; Chun W. “Design and Implementation of MPLS
Network Simulator”. [5th International Conference on
Information Networking, February 2001.

Ahn G.; Chun W. “Simulator for MPLS Path Restoration and
Performance Evaluation”. Joint 4th IEEE International
Conference on ATM (ICATM 2001) and High Speed
Intelligent Internet Symposium, April 2001.

Cavendish, Dirceu; Ohta, Hiroshi; Rakotoranto, Hari.
“Operation, Administration, and Maintenance in MPLS
Networks”. IEEE Communications Magazine, Oct. 2004.

Dominguez-Dorado M.; Rodriguez-Pérez F. J.; Gonzélez-
Sanchez J. L.; Marzo J. L.; Gazo A. “An Architecture to
provide Guarantee of Service (GoS) to MPLS”. IV
Workshop in G/MPLS Networks, April 2005.

Goh, Walter. “Review: JFreeChart”. NewsForge — The Online
Newspaper for Linux and Opensource, January 12th
2006. Available at http://software.newsforge.com

Hovemeyer, David; Pugh, William. “Finding Bugs is Easy”.
SIGPLAN Notices. December, 2004.

Huang, Changcheng; Sharma, Vishal; Owens, Ken; Makam,
Srinivas. “Building Reliable MPLS Networks Using a
Path Protection Mechanism”. [EEE Communications
Magazine, March 2002.

Internet2 Netflow. http://netflow.internet2.edu/weekly.

Kodialam M.; Lakshman T. V. “Restorable Dynamic QoS
Routing”. IEEE Communications Magazine, June 2002.

Marzo J.L.; Calle E.; Scoglio C; Anjali T. “QoS Online
Routing and MPLS Multilevel Protection: A Survey”.
IEEE Communications Magazine, October 2003.

OpenSimMPLS: Multiprotocol Label Switching simulator.
http://gitaca.unex.es/opensimmpls

Rosen E. et al. “Multiprotocol Label Switching Architecture”,
IETF RFC 3031, January 2001.

Rosen E. et al., “MPLS Label Stack Encoding”, [ETF RFC
3032, Jan. 2001.

Gonzélez-Valenzuela, Sergio; Leung, Victor C. M. “QoS
Routing for MPLS Networks Employing Mobile
Agents”. I[EEE Networks, May — June, 2002.

AUTHOR BIOGRAPHIES

MANUEL DOMINGUEZ-DORADO
was born in Zafra, Extremadura, Spain and
went to the Polytechnical School of
Caceres, University of Extremadura where
he studied Computer Science Engineering
and obtained his Ms. D. in 2004. He worked for
SADIEL, S.A. before moving again to the University of
Extremadura where he is now a Ph. D. candidate. He
researchs into multiprotocol technologies and
interdomain routing while belongs to the Applied
Telematic Engineering and Advanced Communications
Research Group. His email address is
mdomdor@unex.es and his web page can be found at
http://gitaca.unex.es/manolodd.

FCO. JAVIER RODRIGUEZ-PEREZ
was born in Huelva, Spain and went to the
Polytechnical =~ School of Caceres,
University of Extremadura where he
studied Computer Science Engineering,
obtaining his degree in 2000. He worked for RGD
Solutions S.L. for three years and now he is a Ph. D.
candidate, researching into QoS and traffic engineering
techniques over MPLS. His email address is
fjrodriQunex.es.

JOSE LUIS GONZALEZ-SANCHEZ
received the Engineering degree in
Computer Science at the Computer
Science Faculty of Barcelona
(Polytechnic University of Cataluia)
followed by a Ph. D. in Computer Science (Polytechnic
University of Catalufia). Since 1995, he has been with
the Department of Computer Science (University of
Extremadura) as assistant professor. He is the main
researcher of the Applied Telematic Engineering and
Advanced Communications Research Group
(GITACA). Their areas of interest are: Quality of
Service, Communications Protocols, Traffic
Engeeniering, MPLS and Security. His e-mail address is
jlgs@unex.es and his web page can be found at
http://gitaca.unex.es/jlgs.

ALFONSO GAZO-CERVERO received
his Ms. D. in computer science from the
University of Extremadura (UEx), Spain, in
1999. Since then, he has been a member of
the research and teaching staff in the
Applied Telematic Engineering and Advanced
Communications Research Group (GITACA) of UEx,
where he develops his research toward a Ph. D. in QoS
provision over heterogeneous networks. His email
address is agazo@unex.es and his web page can be
found at http://gitaca.unex.es/agazo.

ACKNOWLEDGEMENTS

This work is sponsored, in part, by the Regional
Government of Extremadura (Education, Science and
Technology Council) under Grant No. 2PR03A090.
AGILA project. http://gitaca.unex.es/agila.

